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Methods of studying scale defect structures and 
transport properties

1. Determining the crystalline sublattice with the predominant 

disorder (e.g. marker method) 

2. Determining deviation from stoichiometry in the compound 

that constitutes the scale that constitutes the scale 

3. Determining the type and concentration of point defects in 

the compound that constitutes the scale (defect structure)

4. Determining the mobility of the defects that constitute the 

scale (transport properties)



Methods of studying deviation from 
stoichiometry in compounds constituting a scale

• Direct gravimetric method
• Rosenburg method
• Volumetric or manometric method• Volumetric or manometric method
• Chemical analysis of the scale composition
• Electrochemical method
• Redox method 
• Roentgen method



Direct gravimetric method in deviation from 
stoichiometry studies

Experimental stages:

• Weighing the studied metal sample: mMe – initial sample mass
• Complete oxidation of the metallic sample: mX – sample mass 

change

Example I: 
MeX, predominant disorder in the cation sublattice

change
• Determination of the molar ratio of the metal to the oxidation in the 

scale compound: m M
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X X

/

/

< 1
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> 1
Me1+yX

MMe and MX – molar mass of the metal and oxidant, respectively



Experimental stages:

• Weighing the studied metal sample: mMe – initial sample mass
• Complete oxidation of the metallic sample: mX – sample mass 

change

Example II: 
MeX, predominant disorder in the anion sublattice

Direct gravimetric method in deviation from 
stoichiometry studies

change
• Determination of the molar ratio of the metal to the oxidation in 

the scale compound: 

m M
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Experimental stages:

• Weighing the studied metal sample: mMe – initial sample mass
• Complete oxidation of the metallic sample: mX – sample mass 

change

Example III: 
MeaXb, predominant disorder in the cation sublattice

Direct gravimetric method in deviation from 
stoichiometry studies

change
• Determination of the molar ratio of the metal to the oxidation in the 

scale compound: 
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Example III: 
MeaXb, predominant disorder in the cation sublattice, cont.
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Direct gravimetric method in deviation from 
stoichiometry studies
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Rosenburg method in deviation from 
stoichiometry studies

This method will be presented in the sectionThis method will be presented in the section
on scale transport property studies



Determining the type and concentration of point 
defects in the compound constituting a scale

Example: 
Mn1-yS, predominant disorder in the cation sublattice
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S. Mrowec and Z. Grzesik, "Nonstoichiometry and self-diffusion in "α -MnS", Solid State Phenomena, 72, 69-78 (2000).
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Example: 
Mn1-yS, predominant disorder in the cation sublattice, cont.
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Determining the type and concentration of point 
defects in the compound constituting a scale
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Example: 
Mn1-yS, predominant disorder in the cation sublattice, cont.
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Determining the type and concentration of point 
defects in the compound constituting a scale
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∆Sf and ∆Hf – entropy and enthalpy of defect formation
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Scale transport properties

Dd – defect diffusion coefficient [cm2s-1]; describes
defect mobility in thermodynamic equilibrium
conditions for the compound that constitutes the
scale

– chemical diffusion coefficient [cm2s-1]; describes~
D – chemical diffusion coefficient [cm2s-1]; describes

defect mobility in conditions of a defect
concentration gradient, i.e. in non-equilibrium
conditions

DMe – self-diffusion coefficient [cm2s-1]; describes atom
(ion) mobility in the compound that constitutes the
scale



Correlations between the diffusion coefficients
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Cd – defect concentration
Nd – molar fraction of defect concentration
p – degree of defect ionization
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Scale transport properties
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α – geometric coefficient
ω – jump frequency
ao – distance traveled by an atom during a jump
κ – transition coefficient
ν – frequency coefficient
∆Hm – activation enthalpy of defect diffusion
M – metal molar mass



Gravimetry in scale defect structure and 
transport property studies 



dynamic conditions

Scheme of a thermogravimetric apparatus for studying 
metal sulphidation kinetics in sulfur vapors
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• sensitivity: 0,1 µg

Main advantages of the apparatus

• possibility of performing rapid sulfur vapor 

pressure changes

• possibility of performing long-term measurements



Pressure dependence of the manganese 
parabolic sulphidation rate constant
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Sulphidation kinetics of Mn during a rapid change in
sulfur vapor pressure
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Schematic illustration of the microthermogravimetric 
apparatus for studies in H2-H2S mixtures
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Z. Grzesik, "Własności transportowe zgorzelin siarczkowych powstających w procesie wysokotemperaturowej korozji 
metali", Ceramika, 87, 1-124 (2005).
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Methods of studying transport properties

• reequilibration method (relaxation)

• two -stage oxidation method (Rosenburg)• two -stage oxidation method (Rosenburg)

Z. Grzesik, "Własności transportowe zgorzelin siarczkowych powstających w procesie 
wysokotemperaturowej korozji metali", Ceramika, 87, 1-124 (2005).

S. Mrowec and K. Hashimoto, J. Materials Sci., 30, 4801 (1995)

Z. Grzesik, S. Mrowec and T. Walec, J. Phys. Chem. Solids, 61, 809 (2000).

A. J. Rosenburg, J. Electrochem. Soc., 107, 795 (1960).

Z. Grzesik and S. Mrowec, "Kinetics and thermodynamics of point defects in nonstoichiometric metal 
oxides and sulphides. Microthermogravimetric study", J. Therm. Anal. Cal., 90, 269-282 (2007).
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Theoretical reequlibration procedure
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Two-stage oxidation method (Rosenburg) 
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where:

– chemical diffusion coefficient, C d – defect concentration, X 0 – scale
thickness in the I stage of oxidation, k p (gcm -2s-0,5) i k l (gcm -2s-1) – straight
line coefficients plotted in the parabolic and linear syste m, respectively.



Description of scale transport property studies 
on the example of manganese sulfide
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II. Two-stage sulphidation

I. Microt hermogra vimetr y

Z. Grzesik and S. Mrowec, "Kinetics and thermodynamics of point defects in nonstoichiometric metal oxides and 
sulphides. Microthermogravimetric study", J. Therm. Anal. Cal., 90, 269-282 (2007).



10-10

10-8

10-6 Fe
1-y

O (12)

Cu
2-y

O (20)

Mn
1-y

O (19)

11 Gesmundo i wsp., 1992Nb S

Cr
2+y

S
3
 (8)

Ni
1-y

S (7)

Ni
1-y

S (6)

Ni
1-y

S, a (5)

Ni
1-y

S, c (5)

Co
1-y

S (4)

Fe
1-y

S (2)

Fe
1-y

S (1)

Fe
1-y

S

MoS
2+y

Mn
1-y

S

Cr
2+y

S
3

Ni
1-y

S
Co

1-y
S

10 Rau, 1980
9 Mrowec i wsp., 1999
8 Mrowec i wsp., 1985
7 Bastow, Wood, 1975
6 Fueki i wsp., 1968
5 Klotsman i wsp., 1963
4 Mrowec i wsp., 1998
3 Mrowec i wsp., 1982
2 Smeltzer i wsp., 1979
1 Condit i wsp., 1974

Siarczki

Fe
1-y

S (3)

   
 / 

cm
2 s

-1
18731473 1073 673

T    / K 

Temperature dependence 
of the self-diffusion coefficient

5 10 15 20
10-16

10-14

10-12

10-10

17 Volpe, Reddy, 1970

Co
1-y

O (13, 14)

Cr
2+y

O
3
 (18)

Ni
1-y

O (15, 16, 17)

Cu
2-y

O

Mn
1-y

O

Cr
2+y

O
3

Ni
1-y

O

Co
1-y

O

Fe
1-y

O

20 Haugsrud, Norby, 1999

18 Lillerud, Kofstad, 1982

16 Mrowec, Grzesik, 2004

19 Peterson, Chen, 1982

14 Mrowec, Przybylski, 1977
13 Mrowec, Grzesik, 2003
12 Desmarescaux i wsp., 1965

Tlenki

11 Gesmundo i wsp., 1992Nb
1+y

S
2

Nb
1+y

S
2
 (11)

MoS
2+y

 (10)

Mn
1-y

S (9)

Fe
1-y

S (1)

D
M

e   
 / 

cm

T
 -1  104    / K-1

15 Haugsrud, Norby, 1998

.

 

Z. Grzesik, "Własności transportowe zgorzelin siarczkowych powstających w procesie wysokotemperaturowej korozji 
metali", Ceramika, 87, 1-124 (2005).



Mn1-yS – reequilibration kinetics
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Comparison between experimentally determined 
and calculated values of manganese sulfide
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II. Reequilibration and deviation from stoichiometry (calculations)

III. Two-stage sulphidation (calculations)



Image of the surface and cross-section 
of a sulfide scale on manganese

surface

T = 1000 oC,   
p(S2) = 103 Pa,  
t =  240 h 

fracture

Z. Grzesik, "Własności transportowe zgorzelin siarczkowych powstających w procesie wysokotemperaturowej korozji 
metali", Ceramika, 87, 1-124 (2005).



Projection of the MnS crystallographic structure 
in the +100, direction



Comparison between the sulphidation
and oxidation rates of metals
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Temperature dependence of D for selected
metal sulfides and oxides
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Z. Grzesik, S. Mrowec, ”On the sulphidation mechanism of niobium and some Nb-alloys at high temperatures”, 
Corrosion Science, 50, 605-613 (2008).
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Image of the surface and cross-section 
of a sulfide scale on niobium

T = 1000 oC,   
p(S2) = 1 Pa,   
t = 120 h

10 mµ

10 mµ

b

fracture



Perspective projection of 2H-NbS2 crystallographic 
structure in the +100 direction ,



Perspective projection of Nb1+yS2 crystallographic 
structure (for y = 1/3) in the +100 direction,
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Comparison between experimental 
and calculated k   values for Co4-yS3 
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Comparison between experimental 
and calculated k values for Co9S8

′.p

10-8-1

T    / oC
800 700 600

pS2
 (Co9S8  / CoS)

10 11

10-9

10-8

'

'

'

kp experimental

kp calculated

.

k p 
   

/ c
m

2 s
-1

T-1  104    / K-1

 



Comparison between experimental 
and calculated k values for Ni1-yS′.p
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SEM images of sulfide scales
formed on cobalt and nickel
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Projection of Co9S8 crystallographic 
structure in the +100,,,, direction



Projection of NiS crystallographic 
structure in the +100,,,, direction



THE ENDTHE END


